Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38227602

RESUMO

PURPOSE: This study aims to compare two surgical techniques, the standard Vein-to-Artery and the newer Artery-to-Vein (Radial Artery Deviation And Reimplantation; RADAR), for enhancing the success of Arterio-Venous Fistula maturation in end-stage renal disease patients. The impact of diseases like anemia, diabetes, hypertension, and chronic kidney disease were considered. The goals are to advance Arterio-Venous Fistula (AVF) surgery, improve patient outcomes, and contribute to evidence-based surgical guidelines. METHODS: Fluid-structure interaction modeling was employed to investigate how hemodynamic and mechanical stresses impact arteriovenous fistula maturation, with a particular focus on the role of wall shear stress in determining maturation outcomes. The critical threshold for vessel injury was identified as wall shear stress values exceeding 35 N/m2, while stenosis formation was projected to occur at levels below 1 N/m2. This work introduced a novel approach by considering disease-related factors, including blood viscosity (anemia), and vessel elasticity (diabetes, hypertension, and chronic kidney diseases), which directly influence hemodynamics and the generation of wall shear stress. Furthermore, the model was designed to incorporate varying thicknesses and elasticities for both the vein and artery, accurately representing authentic vascular anatomy. RESULTS: The RADAR technique has demonstrated superior performance compared to the standard technique by providing appropriate wall shear stress in critical regions and minimizing the risk of wall damage. Its use of a thicker vessel also reduces the risk of vessel injury, making it particularly effective for patients with Chronic Kidney Disease (CKD), hypertension, anemia, and diabetes, ensuring optimal blood flow and fewer complications. However, there are minor concerns about stenosis formation in hypertension and anemia cases, which could be mitigated by adjusting the anastomosis angle to be lower than 30°. CONCLUSION: Diabetes and hypertension have significant physiological effects that increase the risks associated with arteriovenous fistula maturation. The anemic condition resulting from CKD may help reduce vessel injury but raises concerns about potential stenosis formation. Despite these co-morbidities, the RADAR technique has demonstrated its ability to induce more favorable hemodynamic changes, promoting arteriovenous fistula maturation.


Assuntos
Anemia , Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Diabetes Mellitus , Hipertensão , Falência Renal Crônica , Humanos , Viscosidade Sanguínea , Derivação Arteriovenosa Cirúrgica/métodos , Constrição Patológica , Hipertensão/complicações , Anemia/complicações , Diálise Renal
2.
J Biol Eng ; 17(1): 52, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550706

RESUMO

Radiofrequency Cardiac Ablation (RFCA) is a common procedure that heats cardiac tissue to destroy abnormal signal pathways to eliminate arrhythmias. The complex multiphysics phenomena during this procedure need to be better understood to improve both procedure and device design. A deformable poromechanical model of cardiac tissue was developed that coupled joule heating from the electrode, heat transfer, and blood flow from normal perfusion and thermally driven natural convection, which mimics the real tissue structure more closely and provides more realistic results compared to previous models. The expansion of tissue from temperature rise reduces blood velocity, leading to increased tissue temperature, thus affecting steam pop occurrence. Detailed temperature velocity, and thermal expansion of the tissue provided a comprehensive picture of the process. Poromechanical expansion of the tissue from temperature rise reduces blood velocity, increasing tissue temperature. Tissue properties influence temperatures, with lower porosity increasing the temperatures slightly, due to lower velocities. Deeper electrode insertion raises temperature due to increased current flow. The results demonstrate that a 5% increase in porosity leads to a considerable 10% increase in maximum tissue temperature. These insights should greatly help in avoiding undesirable heating effects that can lead to steam pop and in designing improved electrodes.

3.
PLoS One ; 18(7): e0288607, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459337

RESUMO

PURPOSE: This study contributes to the multidisciplinary understanding of septal L-strut reshaping and introduces innovative surgical design concepts based on engineering principles of static equilibrium. The objective is to enhance structural strength and stability, ultimately leading to improved surgical outcomes. METHOD: Finite element analysis is employed to model the three-dimensional septal cartilage in septoplasty. A significant contribution of this work is the introduction of an innovative redesigns for the septal L-strut structure. These redesigns represent the first-ever attempt to incorporate the center of gravity theory into the modeling of the septal L-strut. RESULTS: Our findings emphasize the significance of attaining a lower center of gravity in the design of the septal L-strut, as it contributes to optimal core strength and stability. To achieve this, we recommend widening the caudal septum and shaping the interior fillet corner to its maximum size, taking into account its specific shape. Notably, the utilization of a standard 20x20 mm septal L-strut, the C-shaped technique, and the septal support graft technique provide superior strength due to enhanced basement support. CONCLUSION: To enhance surgical outcomes in septal L-strut procedures, design modifications are proposed to improve strength and stability, resulting in optimized performance. Recommendations include widening the caudal septum and incorporating fillet shapes in the geometry to lower the center of gravity.


Assuntos
Septo Nasal , Rinoplastia , Septo Nasal/cirurgia , Próteses e Implantes , Rinoplastia/métodos , Análise de Elementos Finitos , Engenharia
4.
Foods ; 11(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454689

RESUMO

A pulsed electric field (PEF) is a technology used for microbial inactivation in food and beverages. This study aimed to examine the effect of PEF treatment on microbial inactivation and quality parameters in Thai orange juice (TOJ). The results showed that PEF and conventional thermal pasteurization (CTP) can be performed for inactivation of Staphylococcus aureus and Escherichia coli in TOJ. A 5-log reduction was obtained after 10 pulses of PEF treatment when using and electrical field strength of 30 kV cm-1, and the microbial inactivation by the PEF treatment resulted from the electroporation more than the temperature. Moreover, PEF treatment affects the quality parameters less than CTP. Moreover, PEF treatment did not affect the TOJ quality parameters such as pH, commission international de l'eclairage (CIE), viscosity, and total soluble solid (TSS), but saved vitamin C and all sugar and all mineral (sucrose, glucose, fructose, sodium, lithium, potassium, magnesium, and calcium) values more than CTP treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...